Suggested Solution to Exercise 3

1. Describe the following curves and express them in the form $f(x, y)=0$.
(a) $x=t^{2}+1, y=t-1 \quad t \in \mathbb{R}$;
(b) $x=\sin ^{2} t, y=\cos t, \quad t \in \mathbb{R}$;
(c) $x=t \cos t, y=t \sin t, \quad t>0$.

Solution. (a) The equation is $x=y^{2}+2 y+2$ which describes a parabola. As y runs from 1 to 0 , the curve lies in the fourth quadrant and hits $(2,0)$ at $t=0$. Then it goes to $(1,1)$ as t runs from 0 to 1 in the first quadrant.
(b) The curve is part of the parabola $x=1-y^{2}$. As $x=\sin ^{2} t$ is always non-negative, the particle keeps running back and forth between the points $(0,1)$ and $(-1,0)$ along an arc of the parabola in the first and fourth quadrants infinitely many times.
(c) This is the Archimedean spiral $x^{2}+y^{2}=\arctan y / x$.
2. In plane geometry the ellipse is defined as the loci of the points whose sum of distance to two fixed points is constant. Let these two points be $(c, 0)$ and $(-c, 0), c>0$ and $2 a$ be the sum. Show the loci (x, y) satisfy the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad b^{2}=a^{2}-c^{2}
$$

Solution. We have

$$
\sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}}=2 a .
$$

We now rearrange terms to have the desired form. First, taking square of

$$
\sqrt{(x+c)^{2}+y^{2}}=2 a-\sqrt{(x-c)^{2}+y^{2}}
$$

and simplify to get

$$
x c-a^{2}=-a \sqrt{(x-c)^{2}+y^{2}}
$$

Taking square again to get

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

3. Let $(c, 0)$ and $(-c, 0)$ be given and let H be the set of all points (x, y) whose difference in distances to $(c, 0)$ and $(-c, 0)$ is a constant $2 a$.
(a) Show that H is the hyperbola

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

(b) Show that it admits the parametric equations

$$
x= \pm a \cosh t, \quad y=b \sinh t, \quad t \in \mathbb{R}
$$

Solution. (a) From

$$
\sqrt{(x-c)^{2}+y^{2}}-\sqrt{(x+c)^{2}+y^{2}}= \pm 2 a,
$$

we get $x^{2} / a^{2}-y^{2} / b^{2}=1$ as in the case of ellipse. (b) is a direct check.
4. * Study the cycloid

$$
x=r(\alpha-\sin \alpha), \quad y=r(1-\cos \alpha), \quad \alpha \in(-\infty, \infty), r>0 .
$$

Solution. Look up chapter 11, [Thomas] or google.
5. Consider the Lissajous curve

$$
x=A \sin (a t+\delta), \quad y=B \sin b t, \quad t \in \mathbb{R},
$$

where A, B, a, b, δ are positive constants. Show that the curve is closed if and only if a / b is a rational number. Here a curve is closed if there exists some T such that $(x(t), y(t))=$ $(x(t+T), y(t+T))$ for all t.
Solution. We could write $x=A \cos \delta \sin a t+A \sin \delta \cos a t$. As $\sin t$ and $\cos t$ are of period $2 n \pi, \sin a t$ and $\cos a t$ are of period $2 n \pi / a$ and $\sin b t$ and $\cos b t$ are of period $2 m \pi / b$. A common period must be of the form $2 n \pi / a=2 m \pi / b$, that is, $b / a=m / n \in \mathbb{Q}$.

Note. Google for more.
6. The folium of Descartes in parametric form is given by

$$
x=\frac{3 a t}{1+t^{3}}, \quad y=\frac{3 a t^{2}}{1+t^{3}}, \quad a>0 .
$$

(a) Show that it defines a regular curve on $(-\infty,-1)$ and $(-1, \infty)$.
(b) Verify that it is the solution set to

$$
x^{3}+y^{3}=3 a x y .
$$

(c) Sketch its graph.

Solution.

(a) We differentiate x, y to get

$$
x^{\prime}(t)=\frac{3 a-6 a t^{3}}{\left(1+t^{3}\right)^{2}}, \quad y^{\prime}(t)=\frac{6 a t-3 a t^{3}}{\left(1+t^{3}\right)^{2}} .
$$

One finds that $\left(x^{\prime}(t), y^{\prime}(t)\right) \neq(0,0)$ for all $t \neq 1$. It defines a regular curve.
(b) When $x=\frac{3 a t}{1+t^{3}}, y=\frac{3 a t^{2}}{1+t^{3}}$, we have

$$
\begin{aligned}
x^{3}+y^{3} & =\frac{27 a^{3} t^{3}\left(1+t^{3}\right)}{\left(1+t^{3}\right)^{3}} \\
& =\frac{27 a^{3} t^{3}}{\left(1+t^{3}\right)^{2}} \\
& =3 a x y .
\end{aligned}
$$

7. Find the velocity, speed and acceleration vectors of the following motions:
(a) $\mathbf{x}(t)=\left(t^{2}, t^{3}\right)$,
(b) $\mathbf{x}(t)=\left(\cos t, \sin t, e^{t}\right)$,
(c) $\mathbf{r}(t)=\left(t, 4 \tan t, 6 t^{2}-t^{3}\right)$.

Solution.

(a) Velocity vector is $\mathbf{x}^{\prime}(t)=\left(2 t, 3 t^{2}\right)$.

Speed is $\left|\mathbf{x}^{\prime}(t)\right|=\sqrt{(2 t)^{2}+\left(3 t^{2}\right)^{2}}=|t| \sqrt{4+9 t^{2}}$.
Acceleration vector is $\mathbf{x}^{\prime \prime}(t)=(t, 6 t)$.
(b) Velocity vector is $\mathbf{x}^{\prime}(t)=\left(-\sin t, \cos t, e^{t}\right)$.

Speed is $\left|\mathbf{x}^{\prime}(t)\right|=\sqrt{(-\sin t)^{2}+(\cos t)^{2}+\left(e^{t}\right)^{2}}=\sqrt{1+e^{2 t}}$.
Acceleration vector is $\mathbf{x}^{\prime \prime}(t)=\left(-\cos t,-\sin t, e^{t}\right)$.
(c) Velocity vector is $\mathbf{r}^{\prime}(t)=\left(1,4 \sec ^{2} t, 12 t-3 t^{2}\right)$.

Speed is $\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{1^{2}+\left(4 \sec ^{2} t\right)^{2}+\left(12 t-3 t^{2}\right)^{2}}=\sqrt{1+16 \sec ^{4} t+144 t^{2}-72 t^{3}+9 t^{4}}$.
Acceleration vector is $\mathbf{r}^{\prime \prime}(t)=\left(0,8 \sec ^{2} t \tan t, 12-6 t\right)$.
8. Find the position $\mathbf{x}(t)$ of the motion in space when the acceleration and initial data are specified:
(a)

$$
\mathbf{a}(t)=\left(6 t,-1,12 t^{2}\right) ; \quad \mathbf{x}(0)=(0,0,0), \quad \mathbf{v}(0)=(1,1,0)
$$

(b)

$$
\mathbf{a}(t)=(\cos t, \sin t, 1) ; \quad \mathbf{x}(0)=(100,20,0), \quad \mathbf{v}(0)=(0,0,5)
$$

Solution.

(a) $\mathbf{a}(t)=\left(6 t,-1,12 t^{2}\right)$. Integrating $\mathbf{a}(t)$ to obtain $\mathbf{v}(t)$:

$$
\begin{aligned}
\mathbf{v}(t) & =\int_{0}^{t} a(\tau) d \tau+v(0) \\
& =\left(3 t^{2},-t, 4 t^{3}\right)+(1,1,0) \\
& =\left(3 t^{2}+1,-t+1,4 t^{3}\right)
\end{aligned}
$$

Again, integrating $\mathbf{v}(t)$ to obtain $\mathbf{x}(t)$:

$$
\begin{aligned}
\mathbf{x}(t) & =\int_{0}^{t} \mathbf{v}(\tau) d \tau+\mathbf{x}(0) \\
& =\left(t+t^{3},-\frac{t^{2}}{2}+t, t^{4}\right)+(0,0,0) \\
& =\left(t+t^{3},-\frac{t^{2}}{2}+t, t^{4}\right)
\end{aligned}
$$

(b) $\mathbf{a}(t)=(\cos t, \sin t, 1)$. Integrating $\mathbf{a}(t)$ to get $\mathbf{v}(t)$:

$$
\begin{aligned}
\mathbf{v}(t) & =\int_{0}^{t} \mathbf{a}(\tau) d \tau+\mathbf{v}(0) \\
& =(\sin t,-\cos t+1, t-0)+(0,0,5) \\
& =(\sin t,-\cos t+1, t+5) .
\end{aligned}
$$

Again, Integrating $\mathbf{v}(t)$ to get $\mathbf{x}(t)$:

$$
\begin{aligned}
\mathbf{x}(t) & =\int_{0}^{t} \mathbf{v}(\tau) d \tau+\mathbf{x}(0) \\
& =\left(-\cos t+1,-\sin t+t, \frac{t^{2}}{2}+5 t-0\right)+(100,20,0) \\
& =\left(-\cos t+101,-\sin t+t+20, \frac{t^{2}}{2}+5 t\right)
\end{aligned}
$$

9. A particle moves on the unit sphere centered at the origin with constant speed. Show that its velocity is always tangent to the sphere.
Solution. Let $\mathbf{r}(t)$ be its position vector. Since it lies on the unit sphere

$$
1=|\mathbf{r}(t)|^{2}=x^{2}(t)+y^{2}(t)+z^{2}(t), \quad \forall t
$$

differentiate both sides with respect to t to yield

$$
0=2 x(t) x^{\prime}(t)+2 y(t) y^{\prime}(t)+2 z(t) z^{\prime}(t)=2 \mathbf{r}(t) \cdot \mathbf{v}(t)
$$

hence $\mathbf{v}(t)$ is perpendicular to its position $\mathbf{r}(t)$, i.e. $\mathbf{v}(t)$ is tangent to the sphere.
10. A particle moves along a parametric curve with constant speed. Prove that its acceleration is always perpendicular to its velocity.
Solution. Let $\mathbf{r}(t)$ be its position vector with velocity vector $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$. Since it has constant speed c,

$$
c^{2}=\left|\mathbf{r}^{\prime}(t)\right|^{2}=x^{\prime 2}(t)+y^{\prime 2}(t)+z^{\prime 2}(t) .
$$

Differentiate both sides with respect to t, we have

$$
0=2 x^{\prime}(t) x^{\prime \prime}(t)+2 y^{\prime}(t) y^{\prime \prime}(t)+2 z^{\prime}(t) z^{\prime \prime}(t)=2 \mathbf{v}(t) \cdot \mathbf{a}(t)
$$

hence $\mathbf{a}(t)$ is perpendicular to its velocity $\mathbf{v}(t)$.
11. Determine the maximum height of a projectile in the plane under the following information: Initial position (0,0), initial speed $160 \mathrm{~m} / \mathrm{sec}$, angle of inclination $\pi / 6$.
Solution. Let g be the acceleration due to gravity, then $\mathbf{a}(t)=(0,-g), \mathbf{r}(0)=(0,0), \mathbf{v}(0)=$ $160\left(\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right)=160\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$

Integrating $\mathbf{a}(t)$ to get $\mathbf{v}(t)$:

$$
\begin{aligned}
\mathbf{v}(t) & =\int_{0}^{t} \mathbf{a}(\tau) d \tau+\mathbf{v}(0) \\
& =(0,-g t)+160\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \\
& =(80,80 \sqrt{3}-g t)
\end{aligned}
$$

Again, integrating $\mathbf{v}(t)$ to get $\mathbf{x}(t)$:

$$
\begin{aligned}
\mathbf{x}(t) & =\int_{0}^{t} \mathbf{v}(\tau) d \tau+\mathbf{x}(0) \\
& =\left(80 t, 80 \sqrt{3} t-\frac{1}{2} g t^{2}\right)
\end{aligned}
$$

The height function is given by $h(t)=80 \sqrt{3} t-\frac{1}{2} g t^{2}$. To find its maximum, we set $h^{\prime}(t)=0$ to find the maximum point $t_{0}=\frac{80 \sqrt{3}}{g}$.
Therefore, the maximum height is $h\left(t_{0}\right)=80 \sqrt{3} \cdot \frac{80 \sqrt{3}}{g}-\frac{1}{2} g\left(\frac{80 \sqrt{3}}{g}\right)^{2}=\frac{(80 \sqrt{3})^{2}}{2 g}$ (in m).
12. A projectile is fired horizontally from a 1 km -cliff to reach 2 km from the base of the cliff. What should be the initial velocity?
Solution. Now we have $\mathbf{a}(t)=(0,-g), \mathbf{r}(0)=(0,1), \mathbf{v}(0)=(c, 0)$, where $c \in \mathbb{R}$ is the initial (horizonal) velocity.

Integrating $\mathbf{a}(t)$ to get $\mathbf{v}(t)$:

$$
\begin{aligned}
\mathbf{v}(t) & =\int_{0}^{t} \mathbf{a}(\tau) d \tau+\mathbf{v}(0) \\
& =(0,-g t)+(c, 0) \\
& =(c,-g t)
\end{aligned}
$$

Again, integrating $v(t)$ to get $x(t)$:

$$
\begin{aligned}
\mathbf{x}(t) & =\int_{0}^{t} v(\tau) d \tau+x(0) \\
& =\left(c t,-\frac{1}{2} g t^{2}\right)+(0,1) \\
& =\left(c t,-\frac{1}{2} g t^{2}+1\right)
\end{aligned}
$$

From $\mathbf{x}\left(t_{0}\right)=(2,0)$ we find $t_{0}=\sqrt{2 / g}$ and $c t_{0}=2$. Thus $c=\sqrt{2 g}$.
13. Let γ and $\boldsymbol{\eta}$ be two differentiable curves from some interval to \mathbb{R}^{n}. Establish the following product rules:
(a)

$$
\frac{d}{d t} \gamma \cdot \boldsymbol{\eta}=\gamma^{\prime} \cdot \boldsymbol{\eta}+\boldsymbol{\gamma} \cdot \boldsymbol{\eta}^{\prime}
$$

(b)

$$
\frac{d}{d t} \boldsymbol{\gamma} \times \boldsymbol{\eta}=\boldsymbol{\gamma}^{\prime} \times \boldsymbol{\eta}+\boldsymbol{\gamma} \times \boldsymbol{\eta}^{\prime}
$$

when $n=3$.

Solution

(a) Let $\gamma(t)=\left(\gamma_{1}(t), \ldots, \gamma_{n}(t)\right)$ and $\boldsymbol{\eta}(t)=\left(\eta_{1}(t), \ldots, \eta_{n}(t)\right)$. Then $\gamma(t) \cdot \boldsymbol{\eta}(t)=\gamma_{1}(t) \eta_{1}(t)+$ $\ldots+\gamma_{n}(t) \eta_{n}(t)$. Therefore,

$$
\begin{aligned}
\frac{d}{d t}(\boldsymbol{\gamma} \cdot \boldsymbol{\eta}) & =\frac{d}{d t}\left(\gamma_{1}(t) \eta_{1}(t)+\ldots+\gamma_{n}(t) \eta_{n}(t)\right) \\
& =\left(\gamma_{1}^{\prime}(t) \eta_{1}(t)+\gamma_{1}(t) \eta_{1}^{\prime}(t)\right)+\ldots+\left(\gamma_{n}^{\prime}(t) \eta_{n}(t)+\gamma_{n}(t) \eta_{n}^{\prime}(t)\right) \\
& =\left(\gamma_{1}^{\prime}(t) \eta_{1}(t)+\gamma_{2}^{\prime}(t) \eta_{2}(t)+\ldots+\gamma_{n}^{\prime}(t) \eta_{n}(t)\right)+\left(\gamma_{1}(t) \eta_{1}^{\prime}(t)+\gamma_{2}(t) \eta_{2}^{\prime}(t)+\ldots+\gamma_{n}(t) \eta_{n}^{\prime}(t)\right) \\
& =\gamma^{\prime}(t) \cdot \boldsymbol{\eta}(t)+\gamma(t) \cdot \boldsymbol{\eta}^{\prime}(t)
\end{aligned}
$$

(b) Let $\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t), \gamma_{3}(t)\right)$ and $\boldsymbol{\eta}(t)=\left(\eta_{1}(t), \eta_{2}(t), \eta_{3}(t)\right)$. Then $\gamma(t) \times \boldsymbol{\eta}(t)=$ $\left(\gamma_{2}(t) \eta_{3}(t)-\gamma_{3}(t) \eta_{2}(t), \gamma_{3}(t) \eta_{1}(t)-\gamma_{1}(t) \eta_{3}(t), \gamma_{1}(t) \eta_{2}(t)-\gamma_{2}(t) \eta_{1}(t)\right)$. Therefore,

$$
\begin{aligned}
\frac{d}{d t}(\boldsymbol{\gamma} \times \boldsymbol{\eta}) & =\frac{d}{d t}\left(\gamma_{2}(t) \eta_{3}(t)-\gamma_{3}(t) \eta_{2}(t), \gamma_{3}(t) \eta_{1}(t)-\gamma_{1}(t) \eta_{3}(t), \gamma_{1}(t) \eta_{2}(t)-\gamma_{2}(t) \eta_{1}(t)\right) \\
& =\left(\left(\gamma_{2}^{\prime}(t) \eta_{3}(t)+\gamma_{2}(t) \eta_{3}^{\prime}(t)\right)-\left(\gamma_{3}^{\prime}(t) \eta_{2}(t)+\gamma_{3}(t) \eta_{2}^{\prime}(t)\right)\right. \\
& \left(\gamma_{3}^{\prime}(t) \eta_{1}(t)+\gamma_{3}(t) \eta_{1}^{\prime}(t)\right)-\left(\gamma_{1}^{\prime}(t) \eta_{3}(t)+\gamma_{1}(t) \eta_{3}^{\prime}(t)\right) \\
& \left(\gamma_{1}^{\prime}(t) \eta_{2}(t)+\gamma_{1}(t) \eta_{2}^{\prime}(t)\right)-\left(\gamma_{2}^{\prime}(t) \eta_{1}(t)+\gamma_{2}(t) \eta_{1}^{\prime}(t)\right) \\
& =\left(\gamma_{2}^{\prime}(t) \eta_{3}(t)-\gamma_{3}^{\prime}(t) \eta_{2}(t), \gamma_{3}^{\prime}(t) \eta_{1}(t)-\gamma_{1}^{\prime}(t) \eta_{3}(t), \gamma_{1}^{\prime}(t) \eta_{2}(t)-\gamma_{2}^{\prime}(t) \eta_{1}(t)\right) \\
& +\left(\gamma_{2}(t) \eta_{3}^{\prime}(t)-\gamma_{3}(t) \eta_{2}^{\prime}(t), \gamma_{3}(t) \eta_{1}^{\prime}(t)-\gamma_{1}(t) \eta_{3}^{\prime}(t), \gamma_{1}(t) \eta_{2}^{\prime}(t)-\gamma_{2}(t) \eta_{1}^{\prime}(t)\right) \\
& =\boldsymbol{\gamma}^{\prime} \times \boldsymbol{\eta}+\boldsymbol{\gamma} \times \boldsymbol{\eta}^{\prime}
\end{aligned}
$$

14. Let $\boldsymbol{\gamma}$ and $\boldsymbol{\eta}$ be two regular curves on some interval and $\gamma\left(t_{1}\right)=\boldsymbol{\eta}\left(t_{2}\right)$. Define the angle between these two curves at this point of intersection to the angle $\theta \in[0, \pi / 2]$ between the two tangent lines passing this point. Show that

$$
\cos \theta=\frac{\left|\gamma_{1}^{\prime}\left(t_{1}\right) \eta_{1}^{\prime}\left(t_{2}\right)+\gamma_{2}^{\prime}\left(t_{1}\right) \boldsymbol{\eta}^{\prime}\left(t_{2}\right)\right|}{\sqrt{\left(\gamma_{1}^{\prime 2}\left(t_{1}\right)+\eta_{1}^{\prime 2}\left(t_{2}\right)\right)\left(\gamma_{2}^{\prime 2}\left(t_{1}\right)+\eta_{2}^{\prime 2}\left(t_{2}\right)\right)}}
$$

Solution. Let $\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right)$ and $\boldsymbol{\eta}(t)=\left(\eta_{1}(t), \eta_{2}(t)\right)$. The corresponding tangent vectors at $\gamma\left(t_{1}\right)=\boldsymbol{\eta}\left(t_{2}\right)$ is given by $\gamma^{\prime}\left(t_{1}\right)=\left(\gamma_{1}^{\prime}\left(t_{1}\right), \gamma_{2}^{\prime}\left(t_{1}\right)\right)$ and $\boldsymbol{\eta}^{\prime}\left(t_{2}\right)=\left(\eta_{1}^{\prime}\left(t_{2}\right), \eta_{2}^{\prime}\left(t_{2}\right)\right)$. The angle is then given by

$$
\begin{aligned}
\cos \theta & =\frac{\left|\boldsymbol{\gamma}^{\prime}(t) \cdot \boldsymbol{\eta}^{\prime}(t)\right|}{\left|\boldsymbol{\gamma}^{\prime}(t)\right|\left|\boldsymbol{\eta}^{\prime}(t)\right|} \\
& =\frac{\left|\gamma_{1}^{\prime}\left(t_{1}\right) \eta_{1}^{\prime}\left(t_{2}\right)+\gamma_{2}^{\prime}\left(t_{1}\right) \eta_{2}^{\prime}\left(t_{2}\right)\right|}{\sqrt{\left(\gamma_{1}^{\prime 2}\left(t_{1}\right)+\eta_{1}^{\prime 2}\left(t_{2}\right)\right)\left(\gamma_{2}^{\prime 2}\left(t_{1}\right)+\eta_{2}^{\prime 2}\left(t_{2}\right)\right)}}
\end{aligned}
$$

15. * Let γ and η be two regular curves in \mathbb{R}^{n}. Suppose $P=\gamma\left(t_{0}\right)$ and $Q=\boldsymbol{\eta}\left(s_{0}\right)$ are points realizing the (minimal) distance between these two curves. Show that

$$
\overline{P Q} \cdot \boldsymbol{\gamma}^{\prime}\left(t_{0}\right)=\overline{P Q} \cdot \boldsymbol{\eta}^{\prime}\left(s_{0}\right)=0 .
$$

Solution. Let

$$
f(t)=\left|\boldsymbol{\gamma}(t)-\boldsymbol{\eta}\left(s_{0}\right)\right|^{2}
$$

It attains its minimum at $t=t_{0}$. Therefore,

$$
f^{\prime}\left(t_{0}\right)=2 \overline{P Q} \cdot \gamma^{\prime}\left(t_{0}\right)=0 .
$$

Similarly, we get the other relation by differentiating

$$
g(s)=\left|\gamma\left(t_{0}\right)-\boldsymbol{\eta}(s)\right|^{2} .
$$

16. The circle $x^{2}+y^{2}=1$ can be described by the graphs of two functions, $f_{1}(x)=\sqrt{1-x^{2}}$ and $f_{2}(x)=1 \sqrt{1-x^{2}}$ over $[-1,1]$. However, both functions are not differentiable at $x= \pm 1$. Can you described the circle in terms of four differentiable functions over some intervals of the x - or y-axis ?
Solution. We define the following four functions: $f_{1}(x)=\sqrt{1-x^{2}}, f_{2}(x)=-\sqrt{1-x^{2}}$ on $x \in(-2 / 3,2 / 3) ; f_{3}(y)=-\sqrt{1-y^{2}}, f_{4}(x)=\sqrt{1-y^{2}}$ on $y \in(-2 / 3,2 / 3)$. Then they are differentiable on their respective domains, and their graphs completely describe the circle.
17. Write down the polar equation for a straight line not passing through the origin.

Solution. Equation of such straight line in rectangular coordinates is given by

$$
a x+b y=c
$$

where $c \neq 0$. Apply the polar coordinate change of variables $x=\rho \cos \theta, y=\rho \sin \theta$, we have

$$
a(\rho \cos \theta)+b(\rho \sin \theta)=c
$$

and hence

$$
\rho=\frac{c}{a \cos \theta+b \sin \theta}
$$

which is the polar equation of the straight line.
Note. Assume that $a, b>0$, and set $\tan \theta_{0}=-a / b, \theta_{0} \in(-\pi / 2,0)$. Then $\theta \in\left(-\theta_{0}, \pi-\theta_{0}\right)$ is the domain of the parameter.
18. Show that the polar equation for the circle centered at $(a, 0)$ with radius a, where $a>0$, is given by

$$
\rho(\theta)=2 a \cos \theta, \quad \theta \in(-\pi / 2, \pi / 2]
$$

Solution Equation of such a circle in rectangular coordinates is given by

$$
(x-a)^{2}+y^{2}=a^{2}
$$

which simplifies to

$$
x^{2}+y^{2}=2 a x
$$

Apply the polar coordinate change of variables $x=\rho \cos \theta, y=\rho \sin \theta$, we have

$$
(\rho \cos \theta)^{2}+(\rho \sin \theta)^{2}=2 a \rho \cos \theta
$$

which simplifies to

$$
\rho^{2}=2 a \rho \cos \theta
$$

Since $\rho>0$, it further simplifies to

$$
\rho=2 a \cos \theta
$$

which is the polar equation of the circle.
19. Sketch the graphs of the following polar equations and convert them to the form $f(x, y)=$ 0 .
(a) The 3-leave Rhodonea

$$
\rho=a \cos 3 \theta, \quad a>0
$$

(b) The astroid

$$
x=4 a \cos ^{3} t, \quad y=4 a \sin ^{3} t, \quad a>0
$$

(c) The logarithmic spiral

$$
r=e^{b \theta}, \quad b>0
$$

Solution. (a) $\cos 3 \theta$ is of period $2 \pi / 3$. It is completely described in any interval of length $2 \pi / 3$. Let us take it to be $[-\pi / 6,5 \pi / 6]$. When $\theta \in[-\pi / 6, \pi / 6]$, the curve forms a leaf in the first and fourth quadrants symmetric with respect to the x-axis. When $\theta \in[\pi / 6, \pi / 2]$, r is non-positive. It forms an identical leaf in the third quadrant. Finally, another leaf lies in the second quadrant when $\theta \in[\pi / 2,5 \pi / 6]$. Using $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$, this curve satisfies

$$
\left(x^{2}+y^{2}\right)^{2}=4 a x^{3}-3 a x\left(x^{2}+y^{2}\right)
$$

(b) This curve is of period 2π. It is given by $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$, or

$$
\left(x^{2}+y^{2}-a^{2}\right)^{3}+27 a^{2} x^{2} y^{2}=0
$$

It has four cusps at $(\pm 4 a, 0)$ and $(0, \pm 4 a)$.
(c) The logarithmic spiral satisfies

$$
x^{2}+y^{2}=e^{2 b \arctan y / x}
$$

20. Consider the one-dimensional motion described by

$$
m \frac{d^{2} x}{d t^{2}}=-k x
$$

where $k>0$ and $x(t)$ is the location of the particle at time t.
(a) Show that $x^{\prime 2}+\frac{k}{m} x^{2}$ is constant in time.
(b) Using (a) to show the motion must be of the form

$$
x(t)=A \cos \left(\sqrt{\frac{k}{m}}\left(t-t_{0}\right)\right), \quad \text { for some } A, t_{0} \in \mathbb{R}
$$

(c) Show that the general solution of the differential equation

$$
m \frac{d^{2} x}{d t^{2}}=-k x+b, \quad b \in \mathbb{R}
$$

is given by

$$
x(t)=\frac{b}{k}+A \cos \left(\sqrt{\frac{k}{m}}\left(t-t_{0}\right)\right)
$$

Solution.

(a) We compute

$$
\begin{aligned}
\frac{d}{d t}\left(x^{\prime 2}+\frac{k}{m} x^{2}\right) & =2 x^{\prime} x^{\prime \prime}+2 \frac{k}{m} x x^{\prime} \\
& =2 x^{\prime}\left(x^{\prime \prime}+\frac{k}{m} x\right) \\
& =0
\end{aligned}
$$

Therefore, $x^{\prime 2}+\frac{k}{m} x^{2}$ is constant in time.
(b) By (a), $x^{\prime 2}+\frac{k}{m} x^{2}=c_{0}$ for some $c_{0} \geq 0$. When $c_{0}=0, x(t)=0$ for all $\left.t \in \mathbb{R}\right)$. When $c_{0}>0$: then

$$
x^{\prime}(t)= \pm \sqrt{c_{0}-\frac{k}{m} x^{2}}
$$

By integrating

$$
\frac{d x}{\sqrt{c_{0}-\frac{k}{m} x^{2}}}= \pm d t
$$

we have

$$
x(t)= \pm \frac{k}{m} \frac{1}{c_{0}} \cos \left(\sqrt{\frac{k}{m}}\left(t-t_{0}\right)\right)
$$

(c) Let $y=x-\frac{b}{k}$. The differential equation becomes

$$
\begin{aligned}
m \frac{d^{2} y}{d t^{2}} & =m \frac{d^{2} x}{d t^{2}} \\
& =-k x+b \\
& =-k\left(y+\frac{b}{k}\right) \\
& =-k y
\end{aligned}
$$

By (b),

$$
y(t)=A \cos \left(\sqrt{\frac{k}{m}}\left(t-t_{0}\right)\right)
$$

Therefore,

$$
x(t)=A \cos \left(\sqrt{\frac{k}{m}}\left(t-t_{0}\right)\right)+\frac{b}{k} .
$$

21. * Find the length of the following parametric curves:
(a)

$$
\mathbf{r}(t)=(3 \sin 2 t, 3 \cos 2 t, 8 t), \quad t \in[0, \pi] .
$$

(b)

$$
\mathbf{x}(t)=\left(t, \frac{t^{2}}{\sqrt{2}}, \frac{t^{3}}{\sqrt{3}}\right), \quad t \in[0,1] .
$$

(c)

$$
\gamma(t)=\left(2 e^{t}, e^{-t}, 2 t\right), \quad t \in[0,1] .
$$

Solution

(a) $\mathbf{r}^{\prime}(t)=(6 \cos 2 t,-6 \sin 2 t, 8)$. Therefore, $\left|r^{\prime}(t)\right|^{2}=(6 \cos 2 t)^{2}+(-6 \sin 2 t)^{2}+8^{2}=100$, and hence $\left|\mathbf{r}^{\prime}(t)\right|=10$ for all $t \in[0, \pi]$.
Therefore, its length is given by

$$
L=\int_{0}^{\pi}\left|\mathbf{r}^{\prime}(t)\right| d t=10 \pi
$$

(b) $\mathbf{x}^{\prime}(t)=\left(1, \sqrt{2} t, \sqrt{3} t^{2}\right)$. Therefore, $\left|\mathbf{x}^{\prime}(t)\right|^{2}=(1)^{2}+(\sqrt{2} t)^{2}+\left(\sqrt{3} t^{2}\right)^{2}=1+2 t^{2}+3 t^{4}$, and hence $\left|\mathbf{x}^{\prime}(t)\right|=\sqrt{1+2 t^{2}+3 t^{4}}$ for all $t \in[0,1]$.
The length is given by

$$
\begin{aligned}
L & =\int_{0}^{1}\left|\mathbf{x}^{\prime}(t)\right| d t \\
& =\int_{0}^{1} \sqrt{1+2 t^{2}+3 t^{4}} d t
\end{aligned}
$$

No need to go further.
(c) $\gamma^{\prime}(t)=\left(2 e^{t},-e^{-t}, 2\right)$. Therefore, $\left|\gamma^{\prime}(t)\right|^{2}=\left(2 e^{t}\right)^{2}+\left(-e^{-t}\right)^{2}+(2)^{2}=\left(2 e^{t}+e^{-t}\right)^{2}$, and hence $\left|\gamma^{\prime}(t)\right|=2 e^{t}+e^{-t}$ for all $t \in[0,1]$.
Therefore, its length is given by

$$
\begin{aligned}
L & =\int_{0}^{1}\left|\gamma^{\prime}(t)\right| d t \\
& =\int_{0}^{1}\left(2 e^{t}+e^{-t}\right) d t \\
& =\left(2 e-e^{-1}\right)-1 .
\end{aligned}
$$

